

Design Evaluation and Technology Transition: Moving Ideas from the drawing board to the Fleet.

"Development issues in transitioning decision support technology to the Fleet."

Jeffrey G. Morrison, Ph.D.

SPAWAR Systems Center Code D44210

(619) 553-9070

Jmorriso@spawar.navy.mil

Ronald A. Moore

Pacific Science & Engineering Group, Inc.

(619) 535-1661

Ramoore@pacific-science.com

1

- What is decision support? How does it relate to decision aiding or advanced automation technology?
- Why should you care about decision support?
- How do we incorporate decision support into C4ISR systems? - Decision Centered Design

What is decision support?

- Identifying all the data required to make a decision, gathering it together organized as meaningful information
 - presenting it where it is needed,
 - when it is needed,
 - the way it is needed.
- Note: Decision support is philosophically different from decision aiding and adaptive automation in that by design we do not take decision making away from decision makers by reallocating it to automation.

What is decision support and why should you care?

- Fleet decision makers are faced with too much *data* not enough *information*.
- ONR has conducted significant research effects of stress on tactical decision makers & how they can be mitigated through decision support & training interventions Reduced manning requirements, complex mission requirements, etc. further exacerbate the problem.
- ◆ SSG XVI "Command 21 Speed of Command" recommended & CNO endorsed immediate application of User / decision-maker centered design; Decision support technologies to command & combat echelons.

Decision Centered Design

Command 21 - "Speed of Command"

"Enabling 'Knowledge-Centric Warfare' for Fleet Decisionmakers"

OPNAV N6M

CDR JP Clagger (703) 601-1483

clager.james@hq.navy.mil

SPAWAR PMW-133

Peggy Ingerski (619) 537-0126

ingerskm @spawar.navy.mil

SSC D44

Jeffrey G. Morrison (619) 553-9070

jmorriso@spawar.navy.mil

Knowledge Centric Warfare: Increasing the Speed of Command

Move the knowledge, not the people

Rethinking Organizations in a Networked World

Move the knowledge, not the people

Knowledge-Centric Warfare

C4ISR Today

Tomorrow: Precision Execution Through Totally Integrated C4ISR

Decision Support: Implementation Issues

- What is required to implement decision support technology?
 - Understanding of the underlying need for decision support technology in a specific application.
 - Understanding of what other technologies & trends relate.
 - Vision of how the technologies fit together
 - N-tier C4I infrastructure
 - A systems engineering methodology that incorporates Cognitive Task Analyses / Knowledge Engineering.

Decision Centered Design Family Tree

The Command 21 Problem

- Fleet decision makers are faced with too much *data* not enough *information*.
 - Fog of War and stress exacerbates the problem.
 - Reduced manning requirements, complex mission requirements,
 etc. further exacerbate the problem.
- ◆ TADMUS, et al. demonstrated that effects of stress can be dramatically mitigated through:
 - User / decision-maker centered design
 - Decision support technologies
- Fleet information systems are often not designed to support the decision makers.

DCD Project Objectives

- ◆ To meet the Navy's Needs, the DCD project must:
 - Develop a formal design process that addresses the needs of the user.
 - Evaluate the design process in terms of operational impact across a variety of Navy applications and command echelons.
 - Training
 - Manning
 - Doctrine
 - Establish entry & exit criteria for program managers.
 - Adapt TADMUS tools and methodologies for other users, e.g. CJTF, HQ-21, Ring of Fire, JCC(X), etc.
 - Research, identify, integrate and leverage other enabling decision support technologies.
 - Integrate decision support technologies with current & planned, Navy C4I & combat system, infrastructure.

DCD is a New Focus for Systems Engineering

Cognitive

Task

Analysis

& NDM

Presentation Technology

Knowledge & Expertise Information

Performance Barriers

Requirements

Information

Training & Doctrine

& Decision
Theory

Stressors:

Time Pressure High Stakes

Uncertainty

Must do something

A CONTRACTOR OF THE CONTRACTOR

g Decision Requirement Decision Centered system design

+

Decision Centered training

+

Decision Centered *organization*

Improved Decision Making

E & Reduced Manning

Naturalistic Decision Making

Experts make decisions differently from novices.

- Experts use <u>heuristics</u> as decision making shortcuts.
 - Recognition-Primed Decision Making
 - Explanation-Based Reasoning
- Heuristics lead to *biases* & can cause *error*.
 - Framing
 - Anchoring
 - Confirmation

Stress Affects Performance.

- Hypervigilance (Impulsive action)
- Intolerance of ambiguity
- Fixation on primary task / Tunnel vision
- Less communicative
- Short-term memory degradation

DCD Functional Process

DCD is necessarily:

- Based on user & SME inputs,
- Reliant on rapid prototyping,
- Employs empirical, scenario-based testing,
- An iterative process.

Needs Assessment

Identify Triggers for Implementing DCD Process

Cognitive Task Analysis

Develop a Formal representation of the decision makers' tasks

Design Concepts

Visioneering

Dynamic Prototype

User Testing

Demonstrate Value Added

Technology Transition

Support to the Fleet

Centers of Gravity for Information Technology

The Next Generation Levers:

- Collection and fusion
- Webs and nets
- Automated reasoning
- Collaboration
- Human-computer interaction
- Cognitive support

Transforming Information Into Knowledge

- Systems with higher order reasoning capabilities
 - Access to, and Aggregation of data
 - Interaction between Information
 - Introspection & Evidential Reasoning on Information
- Synergy between computational and cognitive reasoning
- Visualization of complex knowledge

Next Generation C4ISR Through Focused

Spawar Current State of C4ISR: Serious challenges to imp

Serious challenges to implementing Decision Support

- Multiple data architectures
- Multiple Data Types
 Real Time Tactical
 Intelligence Databases
 Imagery
 Multimedia
 Non-tactical (MS Office products)

- Conflicting data from redundant sources
- Tower of Babel process architecture cannot integrate/deconflict data from multiple data architectures
- User application specific data access (users cannot drill into other applications' data)
- Limited scalability of data server synchronization
- Minimal information awareness, access, and delivery within and across communities
- Commanders have limited and inflexible information resource control

Current C4I is an impediment to implementing Decision Support Technology

Stovepipes!

- Numerous Independent Data systems
- Data and applications intertwined
- Data from one system not available to others
- Poorly integrated bridges ad-hoc and often incompatible
- Complex, high skill levels required, and <u>lifecycle cost</u> prohibitive (development and maintenance)

Decision Support Requirements from C4ISR

- Easy access to all kinds of data
- Compatible with both legacy and long term C4I infrastructure
- Allows Intuitive displays based on CTA & Cognitive theory
 - Multi-dimensional browsing (geographic, spatial, temporal, relational, etc.)
- Data drill down capabilities
- Automate simple processes for user (conversion, formatting, display, updating)
- Provide automation for user definable tasking (state id, task completion, alerting, etc.)

LEIF - Lightweight Extensible Information Framework

SPAWAR SYSTEMS CENTER

Rey Yturralde, Code D44201 (619) 553-4128 yturralde@spawar.navy.mil

Design Criteria

- Implement a flexible client architecture that allows the addition of new data sources and client capabilities at minimal cost/effort
- Implement client architecture that can be as thin as possible
 - Demand loading of classes/functionality
- Utilize existing data sources
 - TDBM, ITS, MIDB, ASAS, etc.

Philosophy / Approach

- Data should be treated as display-independent objects (Model/View/Controller)
 - Model contains the core functionality and data
 - View displays information to the user
 - Controllers handle user input
- Browsers/Viewers are used to display & interact with data along specific dimensions
 - Use data-view tools for specific product display
- Build as a development environment
 - 3rd party addition of new data sources and viewers
- Use emerging industry standards wherever possible

LEIF Architecture Overview

LEIF is a Framework

- Independently developedExtensions are "plugged in"
- Producers interface to any data source
- Consumers process produced data
- Views display processed data in multiple configurations
- Display Model a
 Consumer; organizes and filters data for Views

How a LEIF Producer works

Display Models & Filters

Multiple Display Models

How the LEIF Display Manager works

. Data Producer:

Provides Display Properties for the data type: Tank Image +

SPAWAR

Color: Sand Km/hr Speed: Weight: Fuel: Kgs. Liters

Color: Green Speed: mph Weight: lbs. Fuel: Gals

Color: White Speed: mph lbs. Weight: Fuel: Gals

Data Producers can Override some or all of the Display Properties in a Display Model

2. Display Model:

Manages data item

Selection

3. Display Model:

May have user-specified Display Characteristics for the data type **Tank**:

Color: Yellow & blue

Speed: Km/day Weight: Stones Fuel: Bales

4. Display Model:

Filters the display properties, recognizes "data type Tank" and adds Display Characteristics

Color: Weight:

Fuel:

Speed:

5. Display Model:

Announces the data item is available, to be displayed this

wayı.

Color: Speed: Weight: Fuel:

Green Km/hr lbs.

Gals

yturralde@spawar.navy.mil

LEIF built using COTS / MOTS Technologies

- JavaBeans
 - InfoBus
 - JavaBeans Activation Framework
 - BeanContext
- JFC/Swing
- JDBC, JNDI, JMF, JavaHelp, JNI, Servlet, JSDT (being examined)
- ECMAScript (JavaScript Standard)
- CORBA, COM
- XML

Active Desktop

Capabilities

- Drag & drop objects from any application onto any other application/container
- Changes to an object in an application are reflected in all other applications using the same object
- Automatic type/format conversion for app ingest
- All DataItems are present in all Display Models, therefore simple manipulation of Display Model handles LEIF apps
- Use ActiveX bridge to drop into Microsoft Office products
 - Conversion agents to format DataItems

LEIF Developer Summary

A developer who wants to create a Producer needs to know:

- How to represent their DataItems (allowable attributes and types)
- How to register and submit DataItems to the InfoBus
- How to add JAF commands

A developer who wants to create a View should know:

- How to use the display model
- How to respond to events that the model has changed (TBD)
- How to invoke JAF commands on displayed DataItems
- LEIFv3 will provide APIs to add toolbars and menus to common top-level window

TADMUS DSS-2: CIC Conceptual Design

For additional information:

Jeffrey G. Morrison, Ph.D. SPAWARSYSCEN 53570 Hull St., Code D44210 San Diego, CA 92152-5001 USA (619) 553-9070 E-Mail: jmorriso@spawar.navy.mil Ronald A. Moore
Pacific Science & Engineering Group
6310 Greenwich Drive, #200
San Diego, CA 92122
(619) 535-1661
E-Mail: ramoore@nosc.mil

USS Mt. Whitney JOC - After Recent Re-Design

Lessons Learned - CJTF

- BWC needs assistance integrating data and defining and displaying information to the CJTF and the battle watch when dealing with operational issues
 - Intuitive "Summary" graphics
- Anchor Desks need tools to facilitate providing "value added" information to the BWC
 - collaboration tools, graphical representations of relevant data
- Anchor Desks need ability to effectively monitor tactical / operational displays
- ◆ JOC requires an effective communications capability between watchstations

Lessons Learned - CJTF (contd)...

- BWC/Anchor desks need embedded training capability to accelerate learning curve for "augmentee" personnel
- Legacy displays are not optimal in supporting exchange of relevant information and aggregating data to represent meaningful information
- Collaboration across anchor desks is complicated by a myriad of applications and C4I metaphors being used (Windows/X-Windows/Internet browsers/GCCS-M, etc.)

The CJTF Conceptual redesign... **Proposed Layout**

Gross Dimension = 35' X 20' (Scale: 1'' = 4')

CJTF DSS Conceptual Design

Common design features across numerous function- and task-customized workstations (e.g., BWC, Anchor Desks, CJTF, etc.)

Communications
Access Panel
(Secure and
Un-Secure Radio R/T
Circuits)

Left-most and right-most displays angled 20° - 30° toward user

STU-III Phone

POTS Phone

(Lower display inset horizontally into work surface)

SPAWAR

Conceptual CJTF Collaborative Decision Support System:

A "Picture Window" into a "sea of information" displayed using a 4096x2304"data wall" & fed from Anchor Desk DSS's.

Conceptual CJTF Collaborative Decision Support System:

A "Picture Window" into a "sea of information" displayed using a "data wall" & fed from Anchor Desk DSS's.

Decision Centered Design

Information Systems for Fleet decision makers that:

Are applicable to ALL command echelons & mission areas,

Enable Knowledge Centric Warfare with IT-21 infrastructure

(and beyond),

Essential to effective use of limited manpower,

Key to achieving "Speed of Command".

"Very soon, this will become most important"

- VADM Cebrowski